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Viscous fingering in random porous media is encountered in many applications of two-phase flow,
where the interface is unstable because the ratio of the viscosity of the displaced fluid to that of the in-
jected fluid is large. In these applications, including enhanced oil recovery, characterization of the width
of the interface is an important concern. In the limit of stable flow, the interfacial width had been found
to grow as w =17, where B=~0.66, approximately independent of capillary number. To study the same
behavior for the unstable case, we have simulated flow in two-dimensional random porous media using a
standard model with different viscosity ratios and zero capillary pressure. When the injected fluid has
zero viscosity, viscosity ratio M = o, the interfacial width has the expected self-similar diffusion-
limited-aggregation-like behavior. For smaller viscosity ratios, the flow is self-affine with 8=0.66+0.04,
which is the same value that had been observed in studies of stable flow. Furthermore, the crossover
from self-similar fractal flow to self-affine fractal flow is observed to scale with the same “characteristic”
time, 7=M?!7, that had been found to scale the average interface position. This “fractal” scaling of the
crossover leads to definite predictions about the viscosity-ratio dependence of the amplitudes associated
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Dynamics of growing interfaces from the simulation of unstable flow in random media

with interfacial position and interfacial width.

PACS number(s): 68.10. —m, 47.55.Mh, 03.40.Gc

I. INTRODUCTION

The structure of driven interfaces has been the subject
of extensive study during the past decade [1]. The mar-
ginally stable development of an initially smooth surface
into a generically rough surface can be described through
the scaling of the interfacial width, W, with time ¢ and la-
teral size L. This scaling function takes the form

W=tPf(t/LB), (1)

where a is the roughness exponent since W~L“ when
t>>L?B. B is often called the dynamical exponent since
W =~tP when t <<L%®, (some authors call z=a/B the
dynamical exponent, in which case they name B the
“early-time” exponent). This marginally stable develop-
ment of a rough interface has been observed in a broad
class of growth phenomena including stable flow in
porous media [2-4], surface deposition [5,6] directed po-
lymers and bacteria growth [7], in addition to several oth-
er growth problems like the roughness associated with
the wetting or the burning of paper [8,9]. Simulations of
wetting invasion show similar behavior using an invasion
percolation model where capillary forces dominate [10].

Unambiguous analytic results in two dimensions, based
on the Kardar-Parisi-Zhang (KPZ) equation [11], gave
values of the exponents a=1 and B=1 [11], which satis-
fy the scaling identity

atz=a+a/B=2. (2)

However, the values from the experiments on two-
dimensional systems, discussed above, all indicate larger
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values of the indices, e.g., a=0.68—0.85, with most of
the values clustering around a=~0.8 and $~=~0.67. A re-
cent measurement of both the dynamic index and the
roughness index from a Hele-Shaw experiment deter-
mined that B~0.65 and a~0.81, which values satisfy the
scaling identity a+z =2 {2]. In an attempt to explain the
discrepancy between the experiments and the seemingly
general theory. Zhang postulated that “rare” events can
scale to give a power-law tail to the noise distribution in
the KPZ equation which would lead to nonuniversal dy-
namics and roughening exponents depending upon the
exponent p in the power-law tail [e.g., in d dimensions,
a=(d+2)/(u+1) for p. <p<d-+2] [12]. Subsequent
theoretical work supports these predictions [13,14]. Al-
though this work may explain why experimental values
are so different from the first results of the KPZ equation,
it is still somewhat surprising that such a wide range of
experimental systems can be described by nearly “univer-
sal” values of the indices @ and B. Is the power-law ex-
ponent p also universal, and if so why? However, recent
work studying the crossover from KPZ growth to
power-law noise growth showed that logarithmic correc-
tions near the crossover seem to smooth the variation in
the roughness exponent [14].

In much of the previous work there has been a single-
valued interface h(x,?) at a given lateral position x, i.e.,
there are no significant overhangs, as one observes in
diffusion-limited aggregation. Furthermore, many of the
systems theoretically and experimentally have a pinning
mechanism, e.g., capillary pressure [3,4,10,15,16], which
could be the source of the power-law noise necessary for
the KPZ equation to give the experimentally observed in-
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dices. It is intriguing that recent work on fracturing in
nearly two-dimensional solids [17], where the pinning-
depinning is manifest, shows that the fracture width
scales with nearly the same roughness exponent,
w=~L%¥ as the growth fronts discussed above.

We have simulated a physically realistic model of mis-
cible two-phase, Poiseuille flow in porous media which
differs from the above systems in three respects: (i) our
simulations study the “unstable” flow limit for viscosity
ratios M >1 up to the M — o limit, at which limit the
flow is modeled by diffusion-limited aggregation (DLA);
(ii) there is no obvious pinning mechanism because
Poiseuille flow is valid in the limit of infinite capillary
number (zero capillary pressure); and (iii) there is not a
single-valued interfacial position, h(x,t), because of
overhangs and droplet breakoff as can be seen in Fig. 1.
In earlier papers [18,19], we have shown that the flow in
this system crosses over from DLA-like mass fractal

. . \D .
[(mass) =~ (time) =~ (size) /] for M =  to a compact object
[(mass) = (time) =~ (size)?] for finite M where D ¢ is the frac-
tal dimension and d is the Euclidean dimension. This
crossover was shown to occur at length scale / which in-
creases with the ratio of the fluid viscosities as / ~M%24,
so that in the limit of infinite viscosity ratio (where the in-
jected fluid has zero viscosity) the flow has the expected
DLA-like behavior at all length scales [18].

In this paper, we characterize the interfacial width as-

Viscosity Ratio M= 10,000
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sociated with the viscous fingering in this model of unsta-
ble flow, which is relevant to a wide range of applications
including enhanced oil recovery. In the DLA limit the
flow patterns should be self-similar, so that all lengths
should scale in the same way with time (mass of the in-
jected fluid), so that the width w and the average interfa-
cial position {4 ) scale as

(h)=w=tlte, (3)

where 1+e=1/(D;—1)=1.4 for DLA growth in the
short, wide rectangular systems shown in Fig. 1 [18].
After the flow has crossed over to the compact regime so
that (h)=~t, the interface is still rough with w=t?,
characteristic of self-affine fractal patterns. Analyzing
the interfacial width, we will characterize the behavior of
the width in both the self-similar and self-affine limits, as
well as the crossover between the two limits.

II. DESCRIPTION OF THE MODEL

In modeling two-phase, Poiseuille flow in porous
media, we have used a simple, standard model which is as
physically realistic as possible; a detailed discussion is
presented in Ref. [18]. We assumed a variant of the stan-
dard square lattice model of homogeneous two-
dimensional porous media [20,21], and [22] in which the
pore bodies, at the sites of a square lattice, all have unit
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FIG. 1. Near-breakthrough flow patterns for three viscosity ratios.
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volume, but the cross-sectional area of each pore throat is
randomly chosen from a uniform distribution. This dis-
tribution is known to give random, fractal flow for
infinite viscosity ratio [22]. Knowing the conductances
from the geometry of the porous medium and the loca-
tion of the interface, we then use a slight modification of
the standard Gauss-Seidel iteration of the discrete La-
place equation until the residual is less than 107°. This
upper bound on the residual and the flow rules, to be de-
scribed shortly, were found to satisfy total fluid conserva-
tion to within 0.5%, even after 1400 time steps. Know-
ing the conductance and the pressure drops across the
throats enables us to determine the flow rate for each
throat. A straightforward deterministic procedure is
then used to advance the interface through a short time
At. Although there is zero interfacial tension in
Poiseuille flow, there is a well-defined interface in our
model flows, because we have assumed negligible disper-
sion of the two phases. Flow is allowed in every throat;
and the deterministic flow velocity is allowed to advance
(or retreat) the interface within the pore throat, into its
connecting pore body, and through a pore body into its
outflow throats. This procedure has the advantage of not
suppressing fractal flow [21] as do averaged methods,
such as the grid-block procedure [23]. Indeed, earlier
variants of this model were used to study fractal flow
[21,22,24], and we have verified that the large viscosity-
ratio limit of this model does produce the expected
DLA-like fractal flows [18]. In this model we have
defined time to be proportional to the total injected
volume ¥V, specifically t=1.3+(V,,/N), where N is
the number of inlet sites (i.e., lateral width) and the small
additive shift of 1.3 arises from the discreteness of the
model and only serves to reduce early time curvature in
the fractal dimension plots [18]. Since our earlier papers,
we have performed additional simulations to improve the
statistics for the interfacial width. These additional simu-
lations were performed on porous media which were 96
pore bodies long (in the flow direction) by 640 pore bodies
wide; several near-breakthrough patterns from these
simulations are showing in Fig. 1. These simulations
were performed on the CRAY YMP at the University of
Nevada at Las Vegas, with each simulation requiring an
average of three hours of CPU time.

IIl. DYNAMICAL BEHAVIOR
OF THE INTERFACE

Figure 1 shows qualitatively how the flow patterns
change from a DLA-like limit near the infinite viscosity
ratio to self-affine behavior with a compact background
and a rough interface at a much smaller viscosity ratio.
To characterize this behavior, we have modeled flows for
viscosity ratios in the crossover regime M =10, 30, 100,
and 300, as well as for M =10 000 near the DLA-like lim-
it. To quantify the observed behavior, we have deter-
mined the interfacial width w and the time ¢ at each time
step during the simulations. For each viscosity ratio, we
performed these simulations for a number of different
realizations of the model porous medium, and we aver-
aged the output of the different realizations as described
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in an earlier paper [18]. Figure 2 shows the resulting
averaged data for w/t"* vs t for all the viscosity ratios
studied; the standard errors are no larger than the data
points. As expected from above, the data for M =10000
show self-similar DLA-like fractal behavior, Eq. (3) with
w/t"*~const. For the smaller viscosity ratios, the
curves initially follow the constant self-similar fractal
behavior, but, beginning with the M =10 data, they all
break away and approach a straight line of negative
slope, characteristic of the rough interfaces w=~t”. As
with the average position of the interface [18], this brea-
kaway or crossover occurs on a characteristic time scale
7, which increases with the viscosity ratio. Figure 2
shows a well-defined crossover from DLA-like growth
(w/t"*=~const) to eventual self-affine behavior
(w/t'*=~tP~1%) for all relevant viscosity ratios. To
determine the value of the dynamical exponent B, we fit
the linear portion of the data in Fig. 2, obtaining values
of B in the range 0.62<3<0.69. To demonstrate the
goodness of the fit, Fig. 3 shows the data for w /%% vs 1;
here, the data initially follow the fractal behavior
(w/t%%6~¢1-47066) breaking away at the characteristic
crossover time to approach a constant. Since the small
viscosity-ratio data are so constant in Fig. 3, we assert
that $=0.661t0.04, which is consistent with the least-
squares fits above. To well within errors, our result for
unstable flow agrees with the experimental determination
B=~0.65 from the injection of glycerol into air (the ex-
treme stable limit, M <<1) [2].

Our earlier study of the average interfacial position in
these edge injection systems showed that a characteristic
crossover time =M ', where ¢,=0.17%0.03, served to
scale (i.e., account for the viscosity-ratio dependence of)
all the asymptotic data, but that a correction to scaling
significantly improved the scaling of the nonasymptotic
data [18]. Physically, this correction to scaling,
A=8/M%"", represents a viscosity-ratio-dependent shift
of the time origin, which does vary relatively little be-
tween the viscosity ratios in the crossover regime. In
short, the variable u={t+(8/M%!")} /M®!" served to
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FIG. 2. Plot of the smoothed data for w /t!* vs ¢, for viscosi-
ty ratios M =10 (X ), M=30 (0), M=100 (+), M=300 (A),
and M =10000 (M), showing the self-similar fractal character
(DLA-like) of the early time flows.
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FIG. 3. Plot of the smoothed data for w /t%% vs ¢, for viscos-
ity ratios M =10 (X), M=30 (0), M=100 (+), M=300 (A),
and M=10000 (M) showing the self-affine character (with
B=0.66) of the post-crossover flows.

scale the data for average interfacial position. If this
variable correctly scales the interfacial position, it seems
likely that the same variable should scale the interfacial
width, especially since the scaling in the DLA limit
should be self-similar. Therefore one expects that interfa-
cial width would scale as

t+A
T

w=t1eQ , 4)

where 1+e=1.4+0.05, A=(8/M""), and r=M",
where ¢,=0.1710.03. This scaling expression is tested
in Fig. 4, where we have used our data to plot w /¢4 vs
(t+A)/7. The data obey the scaling prediction quite
well, supporting the hypothesis that the same crossover
scaling should apply to both the interfacial position and
width.

The scaling of the interfacial position enabled us to
determine the viscosity-ratio dependence of the ampli-
tude describing the linear advance of the interface in the
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FIG. 4. Scaling plot [Eq. (4)] of the smoothed data for viscos-

ity ratios M =10 (X), M=30 (0), M=100 (+), M=300 (A),
and M =10000 ().
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post-crossover regime, t >>7; specifically,
(R)=v(M)t, v(M)=vM™, 5)

where £¢,=0.0710.02 [18]. Here the scaling of the in-
terfacial width enables us to determine the viscosity-ratio
dependence of the amplitude for the self-affine growth of
the interfacial width in the post-crossover regime. At
large times,

lim w=o(M)?, (6a)
t— 0
so that
S+ lim 0 |[EFA | =1 lim (e /7)
t— 0 t—
B—(1+¢)
=w0t1+e =
=wyM*) BT+ (6b)

where the scaling function Q(u#) must have the right
large time dependence Q(u)=~(u)f~1*¢ to give the t#
behavior in the post-crossover limit. This shows that the
viscosity-ratio dependence of the interfacial width must
be described by an exponent ¢,(1+¢e—8)=0.126+0.035,
which shows a small power-law increase of the interfacial
width with increasing viscosity ratio.

IV. INTERFACIAL ROUGHNESS

In the experiments on stable systems, there is a well-
defined (i.e., single valued) interfacial position so that the
“scale” roughness develops from zero at small scales
(L=0) to the asymptotic t? values for L >>t#/%. Be-
cause of overhangs and droplet breakoff in our simula-
tions [see Fig. (1)], at any given point x in the lateral
direction, one can only define an average interfacial posi-
tion; and the fluid interface has a finite width at any given
point x. Our quantitative definitions of average interfa-
cial position () and average interfacial width w are dis-
cussed in the Appendix. Small-scale or intrinsic widths
were also observed in the Eden model [25] and in in-
vasion percolation models [10]. Our interfaces have a
large zero-scale width, which is nearly as big as the
asymptotic width, i.e., w(¢,L =0) is nearly as large as
w(t,L = ). Figure 5 shows this effect for M =10 flows
at four post-crossover times; at each time the zero scale
width is more than 70% of the asymptotic width. There-
fore, scale roughness is much less significant in our simu-
lations of unstable flow, and asymptotic widths are
achieved at much smaller L than is the case in the experi-
ments on stable flow where the intrinsic width is zero and
“‘scale” roughness is far more significant. Even so, we are
able to estimate that a=0.8, from the small-scale data
(L <20). Our estimates for @ and B agree with the scal-
ing relation between a and B, Eq. (2), which has proven
reliable for other systems. Figure 6 shows the result of at-
tempting to scale the interfacial width using the form in
Eq. (1) and our estimates for the values of the indices;
the overlap of the data for different times shows that our
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FIG. 5. The scale roughness in w(¢,L) for viscosity ratio
M =10 at times t =43 (+), t=53 (%), t=63.5(X), and t =74
(m).

data are consistent with this standard scaling of the inter-
face. The straight line in Fig. 6 has slope 0.8, indicating
the reliability of our estimate a~=0.8.

V. CONCLUSIONS

This work shows that the compact to fractal crossover
characterized in our earlier papers [18,19] is actually a
crossover from DLA-like self-similar fractal flow at
M = to the self-affine flow at finite viscosity ratio. The
dynamical and roughness exponents characterizing the
development of the interface in our simulations of unsta-
ble flow were f=0.66+0.04 and a=0.80+0.03, where
the uncertainty in a was determined from the scaling re-
lation Eq. (2). These are essentially the same values
which characterize the well-studied stable flow for a
variety of capillary numbers. This is a surprising univer-
sality, given the differences between our model [(i) unsta-
ble flow, (ii) absence of a pinning mechanism, and (iii) im-
portance of short-scale width] and the other systems
studied; it is especially surprising since the theory
(modified KPZ equation) predicts that the indices should

Aw/to'68

0.82

AL/t

FIG. 6. The scaling [Egs. (1) and (2)] of w(#,L) for viscosity
ratio M =10 at times t =43 (+), t=53 (%), t=63.5(X), and
t=74 (M). The straight line has slope 0.8 showing the reliabili-
ty of our estimate a~=0.8.

depend on a parameter, the power characterizing the
small probability noise.

The crossover of the interfacial width from self-similar
DLA-like behavior at infinite viscosity ratio to self-affine
(compact) behavior scales with the same characteristic
time, 7=M ' ($,=0.1710.03) that was shown to scale
the interfacial position in our earlier work [18]. This
fractal scaling of the interfacial position and width en-
abled us to determine the viscosity-ratio dependence of
the amplitudes in the self-affine post-crossover flow

lim (h)=v(M)t, v(M)=v,M™",

{—

limw=o(M)? , o(M)~wogM*)*F

t—
where £¢,=0.07+0.02 and ¢,(1+e—p)=0.126+0.035,
so that both the interfacial position and the interfacial
width are described by a small power-law increase with
viscosity ratio.

Because of the surprising universality of interfacial
scaling exponents, we are studying the noise associated
with the flow in order to understand any similarities or
differences between the noise distributions in our model
with those in systems with pinning mechanisms.
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APPENDIX: DETERMINING THE WIDTH
OF A LOCALLY ROUGH INTERFACE

The interfaces for unstable flow demonstrate the
short-scale roughness, as discussed in the text. Because
of overhangs and droplet breakoff resulting from fluctua-
tions in crossflow, there is not one well-defined interfacial
height 4 at a given position x along the direction perpen-
dicular to flow. This presents more of an ambiguity in lo-
cating the interface and determining its width than one
usually encounters in the standard, driven interface prob-
lems where the width can be unambiguously defined
Ww2={[h(x)—<{h)]*). However, judicious use of the
first and second moments of the position of the injected
fluid allow a determination of the interfacial height h,
and its width W, which correctly reproduce results for
general density profiles. The following arguments are in-
tended to justify our definition of the width in terms of
these first and second moments.

For the time being, let us restrict ourselves to a flow
pattern with a Gaussian interface. Averaging the density
of injected fluid over some length L of the direction per-
pendicular to the average flow, one finds a density p(y),
which we assume to have a Gaussian profile for the
present discussion. That is, the density of injected fluid
has the form shown in Fig. 7, where the derivative of the
density is the Gaussian
172 -

expﬁ(yfho') e (A1)

—p'(y)=py o
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Clearly, this Gaussian interface is centered at the height
h, with width w, and the integral of Eq. (A1) reproduces
the average density profile shown in Fig. 7. The moments
L,= | y"p(y)dy of this average density profile can be

determined exactly, and one finds
m=po=pohy ,

hO w

7 4ho ’ (A2)

() =p/u=

) = /po=

Therefore, the width of the interface can be determined
from the appropriate fluctuation in the average position

1 2

w
1——
2

Wi=3(y?) —4(y )?=1w? ol @Ay
0

where the “correction” term (w/hy)? is a constant for
self similar fractals and vanishes as ¢ ~2%% for self-affine
fractals. Therefore, although both moments have a lead-
ing term depending on the interfacial position 4, the ap-
propriate fluctuation Eq. (A3) removes this dependence
leaving the dependence on interfacial width as the leading
dependence.

It is possible to justify the same expression for the
width, i.e., Eq. (A3) for a general density profile, like the
one in Fig. 8, which shows the saturation from our simu-
lations of flow for viscosity ratio M =10, at a time just
prior to breakthrough. Figure 9 shows a general density
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FIG. 8. Near-breakthrough saturation profile from simula-
tions of flow for viscosity ratio M =10.
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profile, overlaying a sharp interface; Fig. 10 shows the
negative of the derivative of the density profile. We
choose the interface position x, so that the area under
the density profile equals the area under the sharp inter-
face overlay. This requires that the two areas 4 must be
equal: 4_=A,, and that the first moment of the
derivative of the density profile (Fig. 10) be zero. There-
fore, integrating by parts, one can evaluate the zeroth
moment of the density profile, which equals the zeroth
moment of the sharp interface profile with our choice for
ho:

m=pq= [ "yo'()dy
=h0f_°° p'(u)du+ f_w up'(u)du=peh, , (A4)

where u =y —h,, and the final equality follows because
the first integral must be p, and the second must be zero
because of our choice of h,. Integrating the first moment
by parts, one finds

(=2

. 2p(y)dy

131
h rw -
= [ 7 pwrdutho [ 7 up'(u)du

2
+[7 Spuadu . (AS)
As above, the first and second integrals have the values p,
and zero, respectively, because the third integral is a mea-
sure of the mean square of width of the interface (i.e., the
distribution shown in Fig. 10), we will define it to be
polw?/2). Therefore the average position is the same as
in Eq. (A2). Integrating the second moment by parts, we
find
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FIG. 10. —p' is the negative of the derivative of the general
saturation profile.
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o 3
uz=f o yjp’(wdy
Ry oo w
=—3—f_mp(u)du+h§f_wup(u)du

tho [ 7 Sopwidut [T Eopuwidu . (A6)

The first three integrals have the values p,, zero, and
w?/2, respectively, as discussed above for the first mo-
ment. If p’(y) is a symmetric function about the average
interface position hg, then the fourth integral will be
zero; even if the interface is skewed and p'(y) is not sym-
metric when compared with the other terms, the fourth
integral will be a small correction proportional to the
amount of asymmetry in the interface. Therefore to a
good approximation, {y2)=p,/u, will have the same
form as in Eq. (A2).

Obviously there is a difference between the integrals
evaluated above and the corresponding sums we actually
perform in calculating the moments for our discrete lat-
tices, i.e., the sum of a function only equals the integral in
the limit of infinitesimal step size. These sums can be
performed exactly for density profile with a sharp inter-
face [pistonlike flow where p(y)=p, for y <h, for in-
tegrals y and h ]; obviously this density profile has a zero
interfacial width w=0. Determining the moments from
the appropriate sums,

hy
w= 3 ¥"Po » (A7)
y=1
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one finds
h 1
=|—+—= A
(y)d 2 + 2 ] (A8a)
and
hZ h
2 — 0 0 l
()4 NI (A8b)

If one uses Eq. (A3) to determine the width, one finds
W?*=—(y),; not zero as the width must be. For this
reason, in our determination of the width, we have used
the expression

2

W2=3(y2)d—4(y>§+(y)d~—u;—. (A9)
We have shown that the leading term in this expression is
directly related to the mean-square width of the density
profile centered on the average interface position, h; fur-
thermore, this expression is zero for a sharp interface, as
it should be. It is this expression for the width that is
used in studying the structure of the interfaces in the text
of the paper. In earlier work on the first moment of the
interface, we have used similar arguments to “correct”
for short-time differences between the sum and integral
evaluations of the moments, resulting in a shift of 1.3 in
our time origin ¢ =1.3+m /L. Both this “correction” to
the time and the addition of {y ), to the interfacial width
in Eq. (A9) only affect the short-time behavior, serving to
extend the asymptotic fractal scaling of the largest viscos-
ity ratios to short times [see Fig. 3 of Ref. (18)].
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